
Introduction

As an important part of the water purification process, 
coagulant dosage will directly affect the water quality, 
the cost of water purification and profit of the drinking 
WTP. Coagulant dosage is a complex physical and 

chemical reaction process, which has the characteristics 
of time-varying, nonlinear and large time delay [1].  
In the traditional drinking WTP, the human experiences 
and the jar tests are mainly used to determine the 
coagulant dosage [2]. The human experience method 
is that the operator adds the coagulant according  
to the turbidity of the raw water and his own experience. 
The jar test method is to simulate the coagulation 
dosing environment according to the raw water quality, 
so as to determine the coagulant dosage amount.  
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Abstract

Aiming at the shortcomings of traditional Adaptive Neural-Fuzzy Inference System (ANFIS) 
in water quality prediction, such as low learning efficiency and poor prediction accuracy, this paper 
proposed an optimal coagulant dosage prediction hybrid model based on fuzzy C-means clustering 
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as FCM-ISSA-ANFIS. Firstly, the water quality data of drinking water treatment plant (WTP) are 
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the divided data sets are clustered and analyzed by FCM to determine the new fuzzy rule numbers of 
ANFIS. What’s more, the improved SSA is used to train the antecedent parameters and consequent 
parameters of ANFIS to accelerate the convergence of the algorithm and improve the ability of jumping 
out the local optimum. Compared with the traditional ANFIS model based on subtractive clustering, 
the experimental results show that the root mean square error (RMSE), mean absolute error (MAE) 
and standard deviation (SD) of the proposed FCM-ISSA-ANFIS for predicting the annual coagulant 
dosage of drinking WTP are decreased by 45.24%, 66.34% and 54.21% respectively. The proposed 
algorithm can not only solve the shortcomings of traditional ANFIS, but also has fast convergence  
and high accuracy, which can meet the real-time production demand of drinking WTP.
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Both methods share common disadvantages, such 
as large dosing errors, increasing dosing costs, and 
inefficient, which can’t meet the requirements of 
drinking WTP [3]. Therefore, it is necessary to model 
the dosage of coagulant for drinking WTP. Srdjan et al. 
[4] simulated the actual coagulation pool environment, 
fitted the experimental data, generated polynomial 
equations and predicted the coagulant dosage. Although 
the equation can predict the coagulant dosage of drinking 
WTP and reduce the dependence of jar test, the accuracy 
and efficiency of prediction still need to be improved. In 
order to solve the measurement error problem of water 
quality measurement sensor, Liu et al. [5] proposed a 
measurement error detection model of software sensor, 
and the experimental results showed that the proposed 
method has high measurement error detection efficiency. 
Kim et al. [6] put forward the k-means-ANFIS hybrid 
model. The results showed that the prediction accuracy 
of k-means-ANFIS was better than the ANFIS model 
when cyclic input is adopted. Kote et al. [7] applied 
the Cascade Feed Forward Neural Network (CFFNN) 
to the coagulant dosage prediction of WTP. Zhang 
Yanyang et al. [8] proposed a HANN mixed model to 
predict the drinking water output of drinking WTP by 
combining artificial neural network (ANN) with genetic 
algorithm (GA). The experimental results proved that 
this model is better than the single ANN model. Zhang 
Jun et al. [9] put forward an improved multi-modal 
variable structure stochastic vector neural network 
algorithm (MM-P-VSRVNN) by combining rule base 
and principal component analysis method, and applied it 
to coagulant dosage in key production process of water 
purification process. Wang Hui et al. [10] established 
principal component regression (PCR), support vector 
regression (SVR) and Long ShortTerm Memory models 
to predict the influent quality and chemical dosage of 
drinking WTP. The experimental results proved that 
SVR and LSTM had higher prediction accuracy than 
PCR. Liu Yiqun et al. [11] proposed an improved LSTM 
prediction model based on automatic adjustment and 
time consistency. The proposed model can accurately 
predict the coagulant dosage of drinking WTP by 
combining the operator’s experience and seasonal effect, 
but the model is too complicated and the prediction 
efficiency is not high.

In addition, related algorithms based on data-
driven gradually attract the interest of scholars. Wang 
Kungjeng et al. [12] used data-driven method to 
combine the optimization based on GA algorithm and 
particle swarm optimization (PSO) algorithm with 
regression model analysis to optimize coagulant dosage 
in industrial wastewater treatment field. The results 
show that the proposed data-driven method improves 
the sewage quality and sludge level of printed circuit 
board manufacturing, and reduces the cost by 10%. Shi 
et al. [13] put forward a method to determine the dosage 
of coagulant in drinking WTP based on ultraviolet-
visible spectrum and chemometrics. The research shows 
that the combination of online UV-Vis spectroscopy  

and chemometrics can simulate the operator’s decision-
making in determining coagulant dosage. Pang et 
al. [14] established a correlation model based on the 
relationship between disinfection by-products (DBPs) 
and physical and chemical parameters to predict and 
analyze the toxicity of DBPs. Volf et al. [15] established 
four time models to predict the water quality index 
(WQI) of drinking WTP. By using WEKA software to 
set the number of rules and related linear equations, the 
model has a good prediction ability for the peak value 
of WQI in raw water. Bressane et al. [16] proposed  
a fuzzy inference system (D2FIS) based on unmixed 
data to predict the coagulant dosage of WTP in real 
time, which can effectively reduce the operation  
and maintenance cost of WTP. The experimental 
results show that the proposed model is better than 
ANFIS, cascade correlation network and support  
vector machine. Bertone et al. [17] developed  
a data-driven Bayesian network model (BN) to predict 
the water quality of raw water. The experimental  
results prove that the proposed algorithm can effectively 
predict the water quality changes of dam discharge 
in different scenarios. However, those data-driven 
algorithms are too complicated to be used for real-time 
prediction.

Because of its excellent clustering ability, FCM 
algorithm is often used in data clustering, image 
recognition and image segmentation. Saberi et al. [18] 
proposed a FCM clustering model based on weighted 
density peak (DP-WFCM) to realize the anomaly 
detection in production process. Dhruv et al. [19] 
improved FCM by using PSO algorithm, and used the 
improved algorithm to segment the chest CT image 
of COVID-19 infected people. Wang Cong et al. [20] 
proposed an improved FCM algorithm (RFCM) based 
on residual drive for noise estimation of images. 
Compared with the deviation sparse FCM algorithm 
(DSFCM), this algorithm has higher accuracy and wider 
application range. Halder et al. [21] used FCM algorithm 
to detect the quality of groundwater basin suitable 
for agricultural irrigation. The algorithm determines 
different hydrochemical regions by comprehensively 
considering the basic parameters of groundwater, and 
the clustering results are better than those of hierarchical 
clustering, k-means clustering and condensed clustering. 

In line with the above research, this paper focuses 
on the innovative, improvement and application of 
ANFIS. When the literature is examined, the research 
on improving ANFIS by FCM algorithm and improved 
SSA algorithm has not been found. Aiming at the 
shortcomings of traditional ANFIS based on subtractive 
clustering, this paper improves it by using advanced 
multi-strategies such as FCM and SSA, and proposes 
a novel prediction model of coagulant dosage, which is 
called FCM-ISSA-ANFIS hybrid model. Firstly, FCM is 
used to determine the number of fuzzy rules of ANFIS. 
Then, the improved SSA is used to train the antecedent 
parameters and consequent parameters of ANFIS. 
Finally, the annual raw water data is input into the 
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FCM-ISSA-ANFIS hybrid model to realize the real-time 
prediction of coagulant dosage for drinking WTP.

The present research aims to propose a hybrid 
prediction model of optimal coagulant dosage based on 
improved ANFIS, by coupling advanced multi-strategies 
such as FCM and SSA. The main contributions of this 
paper are outlined as follows: 
1. The research statistically characterizes the water 

quality data of drinking WTP and analyzes the 
correlation through Pearson correlation method.

2. FCM algorithm is utilized to determine the new 
fuzzy rule number of ANFIS.

3. The SSA is enhanced by incorporating the Sine 
chaotic mapping method and adaptive weight 
method to train the antecedent and consequent 
parameters of ANFIS model, which contributing to 
faster convergence and greater capacity of escaping 
from local optimum.

4. The research proposes the FCM-ISSA-ANFIS hybrid 
model as a more promising solution to predict the 
optimal coagulant dosage of drinking WTP when 
compared to other algorithms.
The other sections of this paper are organized as 

follows: Section 2 discusses the FCM algorithm. Section 3 
comprehensively explains the implementation of 
improved SSA algorithm to optimize ANFIS. Section 4 
introduces the multi-strategy improved FCM-ISSA-
ANFIS hybrid model. Section 5 compares experimental 
results of the proposed algorithm with the classical 
algorithm. Section 6 summarizes the research and 
highlights the future work.

Fuzzy C-Means Clustering Algorithm 
and Its Evaluation Index

Fuzzy C-Means Clustering Algorithm

Fuzzy C-means clustering algorithm usually employ 
a membership function to determine how much each 
data point belongs to a certain cluster. The core of the 
algorithm is to iteratively calculate and correct the 
cluster centers and classification matrices belonging 
to the membership function, so as to complete the 
cluster classification [22]. FCM divides n data vectors  
Xi(i = 1, 2, ..., n) into C fuzzy groups, and calculates the 
clustering center of each fuzzy group under the premise 
that the objective function satisfying the dissimilarity 
index reaches the minimum. When FCM determines the 
degree of membership of each data point, the elements 
of its membership matrix U can take values on [0,1]. 
The data can be initialized so that the membership of a 
dataset sums to 1, which displays as follows:

1
1, 1, 2,...,

C

ij
i

u j n
=

= =∑
            (1)

The cost function of FCM is usually expressed as:

2
1

1 1 1
( , ,..., )

C C n
m

c i ij ij
i i j

J U H H J u d
= = =

= =∑ ∑∑
  (2)

In the formula, Hi is the cluster center point, U 
is the membership matrix; dij = ||Hi + –Xi|| is the 
Euclidean distance from the center of the i class to the 
j class sampled data point. m is the weighted number of 
[1, +∞). In order to obtain the necessary conditions for 
the cost function of J to reach the minimum value, the 
Lagrangian maximal method [29] is used to solve and 
derivation of uij and Xj, and through continuous iterative 
solution operations, the required cluster centers and 
membership matrices are finally obtained.

Clustering Evaluation Index

The coagulant dosage in the drinking WTP is 
affected by many uncertain factors, the main factors 
are raw water flow, raw water temperature, raw water 
PH value and raw water turbidity. Due to the strong 
uncertainty and nonlinearity of these uncertain factors, 
it is generally difficult to calculate accurately. Therefore, 
FCM algorithm is used to cluster and analysis on the 
coagulant dosage in the drinking WTP, which reduces 
the number of fuzzy rules of ANFIS and improves its 
prediction efficiency. To assess the clustering effect 
of the FCM, an internal clustering evaluation index is 
introduced, such as Bezdek partition coefficient [23], 
Xie-Beni coefficient [24], reconstruction error rate [25] 
and clustering effectiveness indicator [26].

VPC represents the Bezdek partition coefficient. 
Its main purpose is to recharacterize the membership 
degree of the divided data so that the sum of the squares 
of the membership degrees of all elements belonging to 
each category. VPC is defined as follows:

2
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1 c n
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i j

V u
n = =

= ∑∑
                     (3)

Where, u is the element of the data, and n is the 
number of elements. VPC quantifies the compactness and 
separability of clustering results, and the smaller the 
value, the better the clustering effect.

VXB represents the Xie-Beni coefficient, which is 
defined as:
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Where, x is the element before division, and v is the 
element after division. VXB includes the compactness 
and separability of clustering results and the influence 
of clustering number. The smaller the value, the better 
the clustering effect.

VRE represents the reconstruction error rate of the 
data, which is defined as follows:
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Where, I(i) and I’(i) are the grayscale values of the 
i-th data before reconstruction and after reconstruction 
respectively. VRE measures the difference between the 
clustering results and the original data, and the smaller 
the value, the better the clustering effect.

VPBMF represents a clustering validity metric, which is 
defined as follows:

21
PBMF K

K

1( )EV D
K E

= × ×
            (6)

Where, K is the given number of division classes, 
and E1 is the given data set, which is a constant value. 
Ek is the sum of the fuzzy distances between the data 
to be classified and the cluster centers in the individual, 
and the value of VPBMF will increase as Ek decreases. 
Dk is the maximum distance between all pairs of cluster 
centers in an individual. VPBMF takes the accuracy and 
stability of clustering into account, and the larger the 
value, the better the clustering effect.

Improved SSA for Optimizing ANFIS

Adaptive Fuzzy Neural Inference System

Adaptive Fuzzy Neural Inference System is a fuzzy 
neural reasoning system proposed by Jang et al. [27], 
which will not fall into the local optimal limit, and 
the training effect of ANFIS is better than ANN when 
compared with ANN. ANFIS is widely used in control 
system recognition, pattern recognition and some 
nonlinear complex systems due to its decision-making 
ability of fuzzy system and self-learning ability of 
neural network.

In the traditional ANFIS, the If-Then fuzzy rule is 
usually used to express its output as a linear combination 
of fuzzy subsets of the input:

1 1 1 1 1 1

2 2 2 2 2 2

,
,

If x is A and y is B Then f p x q y r
If x is A and y is B Then f p x q y r

= + +
 = + +                         

(7)

The adaptive fuzzy neural inference system is 
usually represented by a five-layer feed-forward neural 
network. The network contains two inputs for (x, y) 
and one output for f. Its architecture can automatically 
generate If-Then fuzzy rules, and can achieve arbitrary 
precision in the process of approximating nonlinear 
functions. Its structure is shown in Fig. 1.

The first layer is the fuzzification layer, the nodes 
of this layer fuzzify the exact input into several fuzzy 

subsets, and use the membership function to describe 
the degree of its membership to a subset. The formula 
is as follows:

1(1)
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µ
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              (8)

Where, xj( j = 1, 2) is the node as the exact input for 
j. Ai or Bi as its corresponding fuzzy subset, μAi or μBi as 
its membership function which shape is determined by 
the antecedent parameters.

The second layer is the rule reasoning layer, which 
is responsible for calculating the incentive strength of 
fuzzy rules. The formula is as follows:

2(2) (1)
1 2

2
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i
O O x x iω µ µ

=
= = = =∏                       

(9)

The third layer is the normalization layer, which  
is responsible for normalizing the excitation intensity. 
The formula is as follows:

2(3)
1

/i l i i
i

O ω ω ω
=

= = ∑              (10)

The fourth layer is the output layer of fuzzy rules, 
which can adaptively generate If-Then fuzzy rules. 
The formula is as follows:

(4)
1 2( )i l i l i i iO f p x q x rω ω= = + +       (11)

Where, {pi, qi, ri} is the consequent parameter.
The fifth layer is the output layer, which is 

responsible for converting the fuzzy output into an 
accurate output. The formula is as follows:

2(5)
1

i l i
i

O fω
=

= ∑                   (12)

The improved SSA algorithm can be used to train 
and learn for the ANFIS model. Firstly, the antecedent 
parameters are fixed. Then, the system output of the 
ANFIS model can be expressed as a linear combination 
of the consequent parameters, which can be expressed 
by the following formula:

2 2
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1 1
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=

∑ ∑

g   = ×θ       
(13)

Where, the vector θ constitutes the consequent 
parameter set of {p1, q1, r1, p2, q2, r2,}, which can be 
estimated and adjusted by the improved SSA. Similarly, 
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2,1
max,

2,

exp( ),

,

t
i jt

i j
t
i j

iX R ST
tX

X B R ST

+

− ⋅ < ∂ ⋅= 
 + Φ ⋅ ≥      (16)

Where, t represents the iterations. Xi,j
t represents the 

position of the i-th sparrow in the j-th dimension. tmax 
denotes the maximum iterations. (0,1)∂ ∈  indicates 
random numbers. ST∈[0.5, 1] indicates the safety value. 
R2∈[0,1] indicates the warning value. Φ∈(0,1) indicates 
the normal distribution. B represents the 1×d matrix. 
If R2<ST, it indicates that the producers are safe for 
foraging. Otherwise, if R2≥ST, it denotes that the natural 
enemies were discovered and the whole population 
should move to other regions. 

In the standard SSA, the initial population of 
sparrows is generated by random function, which has 
some limitations, such as uneven population distribution 
and poor population diversity. Sine chaotic mapping, 
as a kind of chaotic mapping, has the characteristics 
of nonlinearity, randomness and ergodicity, which 
can be used to initialize the population, enrich the 
population size and improve the diversity of the 
population. Compared with Tent chaotic mapping and 
logistic chaotic mapping, Sine chaotic mapping is only 
generated by deformed sin function, and its structure is 
simpler and more operable. Therefore, this paper uses 
Sine chaotic mapping to initialize sparrow population 
and enrich the diversity of sparrow population. The Sine 
chaotic mapping formula [30] is as follows:

1 ( ) sin( )i i ix S x xη π+ = = ⋅ ⋅              (17)

Where, η∈(0,1) represents the chaotic factor.
Since the producers’ fitness value will gradually 

decline in the later iterations, the standard SSA 
algorithm will have shortcomings such as insufficient 
search ability and easy to fall into local optimum, which 
breaks the balance between global exploration and local 
exploitation. Therefore, this paper uses adaptive weight 
method to update the location of the producers, which 
makes the algorithm have better global search ability  

the antecedent parameters in the fuzzy rules and the 
update of the connection weights can be completed by 
the improved SSA, and the training speed and parameter 
learning efficiency of ANFIS model are improved.

Sparrow Search Algorithm 
and Its Improvements

Inspired by the predatory and anti-predatory 
behaviors of sparrows, the sparrow search algorithm 
was put forward by Xue et al. [28] in 2020, which has 
the advantages such as simple structure, few adjustment 
parameters and easy implementation. However, it also 
has disadvantages of uneven population distribution, 
poor initial solution quality and easy to fall into local 
optimum [29]. Therefore, the standard SSA algorithm is 
improved by using Sine chaotic mapping and adaptive 
weight method.

Assume that the sparrow population is represented 
by a matrix as follows:

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

j

j

i i i j

x x x
x x x

X

x x x

 
 
 =  
 
  

L
L

M M M M
L

           (14)

Where, i = 1, 2, …, p. j = 1, 2, …, d. p represents 
the number of sparrow populations, and d represents the 
dimension of the problem. The fitness value of sparrow 
population can be expressed as follows:

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( ) ( )

j

j

i i i j

f x f x f x
f x f x f x

F X

f x f x f x

 
 
 =  
 
  

L
L

M M M M
L

  (15)

The sparrow that finds the food source first will 
become the producers, and its location will be updated 
as follows:

Fig. 1. Basic ANFIS structure. 

...
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...

...

...
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in the initial iteration and stronger local exploitation 
ability in the later iteration. The adaptive weight method 
is updated by the following formula:

max/

sin( )0.4
0.4 t t

t
e

πα ⋅= +
+                  (18)

Then, the producers’ position is updated by the 
adaptive weight method, which can be expresssed by the 
following formula:

2,1
max,

2,

exp( ),

(1 ) ,

t
i jt

i j
t
i j

iX R ST
iterX

X B R ST

α

α

+

− ⋅ ⋅ < ∂ ⋅= 
 − ⋅ + Φ ⋅ ≥ (19)

The variables have been described in formula (16), 
and will not be repeated here again. 

A FCM-ISSA-ANFIS Hybrid Model

FCM-ISSA-ANFIS Modeling

Firstly, the raw water quality data of drinking WTP 
are preprocessed, and the missing values in the raw 
water data are replaced by K-Nearest Neighbors (KNN). 
Then, the preprocessed data set is divided into training 
set and test set, and the divided data set is clustered by 
FCM algorithm to determine the number of ANFIS’s 
new fuzzy rules. What’s more, the improved SSA 
algorithm is used to train the ANFIS model to be an 
optimal coagulant dosage prediction model, which is 
called the FCM-ISSA-ANFIS hybrid model. Finally, the 
improved ANFIS model is used to predict the annual 
coagulant dosage of drinking WTP. The proposed 
FCM-ISSA-ANFIS hybrid model mainly includes the 
following structures: FCM clustering, data division, 
fuzzy system generator, fuzzy reasoning system and 
adaptive fuzzy neural network. The flow chart of FCM-
ISSA-ANFIS hybrid model is shown in Fig. 2.

The modeling steps of the proposed FCM-ISSA-
ANFIS hybrid model are as follows:

Step 1: Pearson correlation method is used to 
analyze the correlation of raw water quality data of 
drinking WTP, and the input variables of the ANFIS 
are determined to be raw water turbidity, raw water 
temperature, PH value and influent flow, and the output 
variable of the ANFIS is coagulant dosage.

Step 2: The raw water quality data of drinking WTP 
is divided into training set and test set according to the 
ratio of 7:3. The training set is used to train the ANFIS 
prediction model, and the test set is used to verify the 
performance of ANFIS.

Step 3: FCM is used to cluster the divided data set 
and get the cluster center. By setting the initial position 
of fuzzy sets, the membership matrix of FCM is used to 
calculate the similarity of each fuzzy set. According to 
the similarity, the fuzzy rules are merged to be a new 

fuzzy rule of ANFIS. The initial cluster center number 
of FCM is set to 28. The maximum iterations of FCM is 
set to 200. The partition matrix index is set to 3, and the 
target error is set to 10E-6.

Step 4: Initialize the parameters of SSA, including 
the number of sparrow populations and the maximum 
iterations. The ANFIS is set to the objective function. 
The training data sets are input of ANFIS, and the 
parameters of ANFIS are trained and optimized by 
improved SSA algorithm, so that the appropriate 
membership function, rule weight and consequent 
parameters are gradually adjusted and found. If the 
training error meets the requirements or reaches the 
maximum iterations, the training is terminated.

Step 5: After training and optimizing the ANFIS 
model, the optimal prediction model is named as the 
FCM-ISSA-ANFIS hybrid model. Then, the test set is 
used to verify the performance of the proposed FCM-
ISSA-ANFIS hybrid model, and its structural parameters 
are restricted to develop its performance.

Step 6: The FCM-ISSA-ANFIS hybrid model is used 
to predict the optimal coagulant dosage of drinking 
WTP in the next year, and RMSE, MAE and SD are 
calculated to further evaluate its performance.

Performance Metrics

To further evaluate the prediction accuracy of the 
proposed FCM-ISSA-ANFIS hybrid model, RMSE, 
MAE and SD are introduced as its performance metrics. 
RMSE describes the degree of deviation between 
the predicted value and the real measured data. The 
calculation formula of RMSE is as follows:

2

1

ˆ( )
RMSE = 

n

k k
k

y y

N
=

−∑
              (20)

MAE describes the absolute average value of error 
between the predicted value and the real measured data, 
which is expressed by the following formula:

2

1

ˆ( )
MAE= 

n

k k
k

abs y y

N
=

−∑
               (21)

SD describes the dispersion degree of the prediction 
error, which is expressed as follows:

2

1
( )

SD = 

n

k
k

y

N

µ
=

−∑
                 (22)

Where, N is the number of samples. μ is the 
arithmetic average of prediction value. ŷk represents the 
average of prediction value. yk represents the prediction 
value.
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Results Analysis and Discussion

Data Description

The drinking WTP treats natural water such as 
reservoirs by a series of physical and chemical methods 
to remove impurities and some harmful substances in the 
water, so that the water quality meets the requirements 
of domestic water. The flow chart of water treatment 
process in drinking WTP is shown in Fig. 3.

In the flow chart of water treatment, the reaction tank 
is an indispensable part of the water treatment process, 
especially for the treatment of high turbidity water 
sources. It uses specific chemical reagents to remove 
impurities and pollutants in raw water, which makes 
the chemical reaction more complete and improves the 
efficiency of sewage purification.

In addition, as can be seen from the Fig. 3, in 
order to achieve more thorough purification of raw 
water, the water treatment system in this study used 

Fig. 2. Flow chart of FCM-ISSA-ANFIS hybrid model.

Fig. 3. Flowchart of water treatment process in drinking WTP. 
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polyacrylamide (PAM) as the flocculants to flocculate 
raw water, which removed suspended matter and 
increased the cleanliness of the raw water.

The dataset utilized in this study was obtained 
from the online operation data of coagulation dosing 
system of Fuzhou drinking WTP in China in 2021. 
Water samples were collected from a large reservoir in 
Fuzhou, Fujian, China. Water samples were collected by 
pumping method at different stages of water treatment 
process, including the quality of raw water, after adding 
coagulant, before and after filtration. The sampling 
frequency was once every 30 minutes, and the average 
concentration of water samples collected within 24 hours 
was determined for further analysis of raw water quality. 
In order to ensure the consistency and integrity of 
samples, all sampling equipment is thoroughly cleaned 
before sampling to avoid any cross-contamination, thus 
ensuring the reliability and accuracy of analysis results. 
The statistical characteristics of the data set are shown 
in Table 1. 

As can be inferred from the Table 1, there is low 
turbidity in winter and high turbidity in summer.  
The influent flow is greatly influenced by the seasons, 
with a smaller inflow in winter and a larger inflow in 
summer. The PH value of raw water does not change 
greatly due to the influence of seasons.

To further analyze the linear correlation between 
raw water turbidity, raw water temperature, PH value, 
influent flow, coagulant dosage and effluent settled 

water turbidity, Pearson correlation method was used 
to analysis the annual data set of drinking WTP, which 
improved the prediction accuracy and efficiency of the 
FCM-ISSA-ANFIS hybrid model.The results of Pearson 
correlation analysis for water quality data is shown in 
Table 2.

From the analysis of the results in the Table 2, it 
can be known that the coagulant dosage has a strong 
linear correlation with raw water turbidity, raw water 
temperature, PH value and influent flow. There is a 
strong positive correlation between raw water turbidity 
and raw water temperature, but a negative correlation 
between raw water turbidity and effluent settled water 
turbidity.

Cluster Results Analysis

Pearson correlation analysis results show that the 
coagulant dosage in drinking WTP is influenced by raw 
water flow, raw water temperature, PH value and raw 
water turbidity. Since the factors fluctuate widely and 
have strong uncertainty and nonlinearity, it is generally 
difficult to calculate them accurately. Therefore, the 
FCM is used to cluster the divided data sets in drinking 
WTP, which reduces the number of fuzzy rules  
n FCM-ISSA-ANFIS hybrid model and improves its 
prediction efficiency. The cluster analysis results of 
FCM are shown in Table 3.

Table 1. Statistical characteristics of the annual operation data of the drinking WTP in 2021.

Table 2. Pearson Correlation analysis.

Classification Variable Mean Standard deviation Coefficient of variation Min Max 

Raw water

Turbidity(NTU) 14.9406 0.8943 0.0599 10.73 16.57

Temperature (ºC) 23.2006 3.9378 0.1697 11 35

PH 7.8328 0.2545 0.0325 6.9 8.7

Influent flow(m3/d) 87584.454 1460.5527 0.0167 85004 89992

Effluent settled water Turbidity(NTU) 0.4247 0.3622 0.8528 0.1 2.50

Operational parameters Dosage(mg/L) 35.8569 2.1465 0.0599 25.76 39.76

Pearson Correlation Raw Water 
Turbidity

Raw Water  
PH

Raw Water
Temperature

Influent
Flow

Coagulant
Dosage

Effluent
Settled Water

Turbidity

Raw Water Turbidity 1 .017 .686** .035 .026 -.032

Raw Water PH .017 1 .040 -.014 -.035 -.004

Raw Water Temperature .686** .040 1 .044 .027 -.017

Influent Flow .035 -.014 .044 1 -.006 -.013

Coagulant Dosage .026 -.035 .027 -.006 1 -.039

Effluent Settled Water 
Turbidity -.032 -.004 -.017 -.013 -.039 1

**. Correlation is significant at the 0.01 level (2-tailed).
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As can be seen from the Table 3, when the number 
of designated clusters is gradually increased from 2 to 
4, the VPC, VXB and VRE are gradually increased, while 
the VPBMF is gradually decreased, which indicating that 
the clustering effect of FCM becomes better. However, 
the value of 4 is a threshold of clustering. When the 
number of clusters continues to increase from 4 to 6, 
the values of VPC, VXB and VRE begin to decrease, and 
the VPBMF begins to increase, which indicates that the 
clustering effect of FCM is getting worse. Therefore, it 
can be inferred that the clustering effect of FCM is the 
best when the value of clustering number is 4.

Prediction Results Analysis

It is well-known that choosing the appropriate 
research parameters is critical to solve the problem 
of predicting the coagulant dosage. In this study, the 
raw water turbidity was choosed as the main research 
parameter and other parameters listed in Table 1 as 
secondary parameters. There are several reasons for 

this. First of all, the turbidity of raw water has been 
widely accepted by multiple regulatory agencies as a 
crucial indicator affecting the quality of raw water in the 
drinking WTP. Secondly, turbidity is a vital metric for 
assessing the number of suspended particles in water. 
Finally, continuous monitoring of turbidity in treated 
water is relatively simple and inexpensive, making it 
a convenient parameter for routine monitoring and 
operation control.

The national water effluent standards mandates that 
total coliforms should be non-detectable, suspended 
matter should not exceed 0.5 NTU, and pH values 
should be between 6.5 and 8.5. Though additional 
parameters shown in Table 1, like pH values, flow rate, 
and temperature, impact water quality, their influence 
primarily remains indirect due to the following reasons. 
Firstly, influent flow rate has a minimal impact on 
coagulant dosage, which is mainly determined on the 
basis of water turbidity levels. Secondly, changes in 
temperature and pH may influence the solubility or 
reaction rate of some chemicals in water, which affects 

Table 3. Results of  FCM for four clustering evaluation indexes.

     Clusters
Index 2 3 4 5 6

VPC 0.8560 0.7737 0.7504 0.7505 0.7532

VXB 0.0821 0.1486 0.1455 0.2083 0.2667

VRE 1.4518E-29 1.6139E-29 2.3795E-29 2.3174E-29 2.1105E-29

VPBMF 0.1649 0.2254 1.5444 0.0521 0.0379

Fig. 4. Comparison results of FCM-ISSA-ANFIS predicted value and actual value. 



Liang J., Liu L.  5180

coagulant dosage. However, the influence is generally 
complex and challenging to quantify, requiring special 
experiments for an accurate assessment.

In summary, although influent flow rate, temperature, 
and pH of raw water impact coagulant dosage, they 
cannot serve as the primary research parameters. 
Turbidity, in contrast, accurately and directly reflects 
the water quality and is thus commonly utilized as main 
operational parameter for predicting coagulant dosage.

Additionally, the type of coagulant to be employed 
in water treatment design is also a crucial parameter 
to consider. The coagulant used in this study is Poly 
Aluminum Chloride (PAC), which has the following 
advantages, such as good coagulation effect on fine 
particles, high purity, easy dissolution, stable quality and 
no negative impact on downstream treatment facilities.

To intuitively observe the prediction effect  
of FCM-ISSA-ANFIS hybrid model, the predicted value 

and real measured data of coagulant dosage are shown 
in Fig. 4. The blue curve represents the real measured 
data of coagulant dosage in drinking WTP, while the red 
point represents the predicted value of coagulant dosage 
in FCM-ISSA-ANFIS hybrid model.

As can be seen from the scatter chart, the red dot 
can basically cover most of the blue curve, which 
shows that the prediction error between the FCM-ISSA-
ANFIS hybrid model and the real coagulant dosage is 
very small, and the proposed FCM-ISSA-ANFIS hybrid 
model has a high prediction accuracy for the coagulant 
dosage of drinking WTP. In addition, the predicted value 
of the proposed FCM-ISSA-ANFIS hybrid model and 
the actual measured data are analyzed by R2 regression, 
and the regression result is shown in Fig. 5.

As can be seen from the Fig. 5, the predicted value 
of the proposed FCM-ISSA-ANFIS hybrid model has 
a linear relationship with the actual measured value, 

Fig. 5. Scatter plot of prediction error of FCM-ISSA-ANFIS. 

Fig. 6. Box chart of coagulant dosage prediction under different algorithms.
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and the equation y = 0.99357x + 0.22748 fitted by linear 
regression is very close to the linear equation y = x, 
which proves that the predicted value of the proposed 
FCM-ISSA-ANFIS hybrid model is very close to the 
actual measured data of drinking WTP. And R2 = 0.9722 
further proves that the proposed FCM-ISSA-ANFIS 
hybrid model has high prediction accuracy.

To further verify the outstanding performance of the 
proposed FCM-ISSA-ANFIS hybrid model, BP neural 
network algorithm, Elman neural network algorithm  
and ANFIS model based on subtractive clustering 
in Ref. [31] (SUB-ANFIS) are selected to compare 
with it. The above-mentioned model is used to predict 
the annual coagulant dosage for drinking WTP, and 
compared with the actual coagulant dosage for drinking 
WTP, and a box chart is drawn as shown in Fig. 6.

As can be seen from the Fig. 6, the first box chart 
is the actual coagulant dosage for drinking WTP, the 
second box chart is the predicted value of the proposed 
FCM-ISSA-ANFIS hybrid model. The third, fourth and 
fifth box chart are SUB-ANFIS model, BP algorithm 
and Elman algorithm, respectively. As for the proposed 
FCM-ISSA-ANFIS hybrid model, its predicted value is 
the closest to the actual coagulant dosage of drinking 
WTP, and the median, quartile and abnormal value of 
the box chart basically coincide with the first box chart. 
As for the SUB-ANFIS model, there is an abnormal 
value in its upper limit, which shows that the prediction 
ability of the SUB-ANFIS model is limited and it is 
impossible to accurately predict the actual coagulant 
dosage of drinking WTP. In addition, the median and 
quartile of the box chart of BP algorithm and Elman 
algorithm are quite different from the first box chart, 
and the number of outliers is also large. It is not difficult 
to infer from the comparison results of box charts that 
the prediction accuracy of the proposed FCM-ISSA-
ANFIS hybrid model is outperformed the BP algorithm, 
Elman algorithm and SUB-ANFIS model.

To observe the advantages of the proposed FCM-
ISSA-ANFIS hybrid model obviously, the RMSE, 
MAE and SD of the prediction errors of the proposed 
FCM-ISSA-ANFIS hybrid model, SUB-ANFIS model, 
BP algorithm and Elman algorithm are calculated, 
respectively, and the results are shown in Table 4.

As can be seen from the Table 4, the order of RMSE 
from small to large is FCM-ISSA-ANFIS, SUB-ANFIS, 
BP and Elman. The order of MAE from small to large 
is FCM-ISSA-ANFIS, BP, SUB-ANFIS and Elman.  

The order of SD from small to large is FCM-ISSA-
ANFIS, SUB-ANFIS, BP and Elman. Therefore, 
when RMSE, MAE and SD are considered as the 
measurement standards of the algorithm, the prediction 
performance of the proposed FCM-ISSA-ANFIS 
hybrid model is outperformed the BP algorithm, Elman 
algorithm and the SUB-ANFIS model in Ref. [31]. 
Specifically, compared with the SUB-ANFIS model, 
the RMSE, MAE and SD of the proposed FCM-ISSA-
ANFIS hybrid model in predicting coagulant dosage 
decreased by 45.24%, 66.34% and 54.21%, respectively. 
Therefore, the proposed FCM-ISSA-ANFIS hybrid 
model has better prediction accuracy and reliability than 
the SUB-ANFIS model in Ref. [31]. It is suggested that 
the proposed FCM-ISSA-ANFIS hybrid model be used 
to predict the coagulant dosage of WTP drinking water 
in real time, so as to reduce the dosage cost and labor 
cost and improve the efficiency of drinking WTP.

Conclusions

In this paper, a hybrid prediction model based on 
FCM-ISSA-ANFIS is proposed to predict the optimal 
coagulant dosage for drinking WTP. First of all, the 
water quality data of drinking WTP is statistically 
characterized and analyzed. Then, the Pearson 
correlation method is used to calculate and analysis 
the variables correlation of water quality data. What’s 
more, the raw water quality data set of drinking WTP 
is divided into training set and test set, and the FCM is 
used to cluster the divided raw water quality data set to 
determine the new ANFIS fuzzy rule number. Finally, 
the improved SSA is used to train the antecedent 
parameters and consequent parameters of ANFIS, and 
its performance is verified by test set. When RMSE, 
MAE and SD are considered as the measurement criteria 
of the algorithm, the proposed FCM-ISSA-ANFIS 
hybrid model outperforms BP, Elman and SUB-ANFIS 
in predicting the annual coagulant dosage for drinking 
WTP. The results show that the proposed FCM-ISSA-
ANFIS hybrid model not only solves the shortcomings 
of SUB-ANFIS in Ref. [31], but also accelerates the 
convergence and increases the ability of jumping out 
the local optimum. The proposed FCM-ISSA-ANFIS 
hybrid model has only been verified in the simulation 
experiment of drinking WTP in local area. To apply 
it to practical engineering problems and verify its 
effectiveness, future research should focus on extending 
it to the real coagulation dosage prediction of drinking 
WTP in other areas.
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SUB-ANFIS 2.2232 1.5406 1.8781
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Table 4. Comparison performance results of different models.
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